Chapter 1	モデリングの概要	1-1
1.1.1	モデリングの概要	
1.1.2	2 教師あり学習の概要	
1.1.3	アソシエーションの概要	
1.1.4	セグメンテーションの概要	1-10
1.1.5	う すべてのモデルの概要	
1.2.1	モデルの検証	1-14

2.1.1	ディシジョンツリーの概要	2-2
2.1.2	ディシジョンツリーの手法	2-3
2.1.3	CHAIDの概要	2-5
2.1.4	C&R Treeの概要	2-6
2.1.5	QUESTの概要	2-7
2.1.6	C5.0の概要	2-8
2.2.1	ストリームの確認	2-9
2.3.1	C&R Tree によるモデル作成の実行	2-13
2.3.2	C&R Tree により生成されたモデルの解釈	2-23
2.3.3	予測値の確認	2-30
2.4.1	クロス集計表による予測精度の確認	2-32
2.4.2	クロス 集計表の 結果の 解釈 	2-35
2.4.3	精度分析ノードによる予測精度の確認	2-36
2.4.4	精度分析の結果の解釈	2-39
2.4.5	評価ノードによる予測精度の確認	2-41
2.4.6	評価ノードの結果の解釈	2-46

Chapter 3 オ-	ートメーション(自動数値)	3-1
3.1.1	自動数値モデルの概要	
3.1.2	ストリームの確認	3-3
3.2.1	オートメーションによる自動数値モデルの作成	3-7
3.3.1	オートメーションによる自動数値モデルの結果の解釈	3-16
3.4.1	モデルのアンサンブル	3-24
3.4.2	予測値の確認	

アソシエーションの概要......4-2 4.1.14.1.2 4.1.3 4.2.1 4.2.2 Aprioriによるアソシエーションモデルの実行(1)......4-13 4.3.1 4.3.2 Aprioriよるアソシエーションルールの結果の解釈(1)......4-18 4.4.1 Aprioriによるアソシエーションモデルの実行(2)......4-27 442 Aprioriよるアソシエーションルールの結果の解釈(2)......4-29 アソシエーションルールのフィルタリング......4-32 4.4.3 4.5.1 アソシエーションルールによる予測......4-33

5.1.15.1.2 K-Meansの概要..... 5.1.3 5.1.4 5.2.15.2.2 5.3.1 5.3.2 5.4.1レコードの所属クラスターの確認......5-27 属性フィールドと所属クラスターの分析......5-29 5.4.2 5.4.3 5.5.1 5.5.2

 スコアリングとエクスポート	Chapter 6 ス
 スコアリングの概要とストリーム	6.1.1
 新規データセットの設定	6.1.2
 新規データへのスコアリング	6.2.1
 エクスポートの概要	6.3.1
 Microsoft Excelへのエクスポート	6.3.2

本書では、IBM SPSS Modeler 18.2Jを使用しています。 IBM およびSPSSは、International Business Machines Corp.の登録商標です。

本書を無断で複写複製(コピー)することは、著作権法上の例外を除き、禁じられています。

3 オートメーション(自動数値)

IBM SPSS Modelerでは、モデル作成のためのオートメーションノードが含まれています。オート メーションでは、目的や用途に応じた複数のモデリング手法を同時に実行させて、精度の良いもの から順番に表示して評価することができます。オートメーションの予測モデルとして、カテゴリ型 フィールドを対象とする自動分類ノードと、連続型フィールドを対象とする自動数値ノードがあり ます。

Contents

§3.1.1 自動数値モデルの概要

予測のためのモデリングでは、カテゴリ型フィールドを対象とする場合と、連続型フィー ルドを対象とする場合があります。連続型フィールドを対象とするモデリング手法は、個別 にそれぞれのノードを用いるか、オートメーションの自動数値モデルで実行することができ ます。自動数値モデルによって指定できるのは、以下の手法です。

	線型回帰	線型回帰分析を実行するノードです。対象フィールド は連続型です。
	1次	線型モデルを作成するためのノードです。
	一般化線型	リンク関数(接続関数)を使用することで、さまざまな 分布のデータを扱う一般化線型モデルを作成します。
(PP)	Random Trees	入力フィールドのランダムサンプリングを行って多 数のツリーを構築し、予測精度を向上させます。
	KNN	類似性に基づいてレコードを分類して予測を行う Nearest Neighbor Modelsを作成します。
CHALD	CHAID	統計的仮説検定に基づくディシジョンツリーの手法 ズす。多分岐のツリーが構成されます。
A CRT	C&R Tree	不純度に基づくディシジョンツリーの手法です。常に 2分岐のツリーが構成されます。
	ニューラルネット	入力層と出力層の間に隠れ層を持つ多層型ニューラ ルネットワークモデルを構築するノードです。

Table3.1.1 連続型フィールドを対象とする主要なモデリングノード

POINT

自動数値ノードを使用すると、連続型フィールドを対象とするモデリング手法を、さまざ まなパラメーター設定で複数実行して、結果の精度の良いモデルを採用することができま す。

§3.1.2 ストリームの確認

オートメーションの自動数値によるモデリングの例として、**Chapter3.str**をIBM SPSS Modelerに読み込みます。このストリームには、データソースとしてカンマ区切りの analysis1.csvがセットされています。顧客の属性や利用サービスに関するデータが記録され ています。フィールド(変数)は16個、8,632行のデータが含まれています。

ここでは、顧客の支払金額を予測するモデル作成の例で、実行手順を確認します。

操作手順

- 1. ファイルメニュー > ストリームを開くを選択します。
- 2. / ModelerC / Chpter3.strを選択します。

Figure3.1.1 Chapter3.strファイルのストリーム

3. ストリームのデータ区分ノードをダブルクリックして編集画面を表示します。

	×
◆ 生成(G) ● ブレビュー(P)	ଡ □ □
設定 注釈	
データ区分フィールド: データ区分	
データ区分: 💿 学習とテスト(I) 🔵 学習、テスト、検証	(\underline{V})
学習データ区分のサイズ: 50 🗢 ラベル: 学習	値 = "1_学習"
テストデータ区分のサイズ: 50 🗢 ラベル: テスト	値 = 『2_テスト"
検証データ区分のサイズ: 0 🗢 ラベル: 検証	値 = "3_検証"
合計サイズ: 100%	\mathbf{O}
値: 🔵 システム定義の値 ("1"、"2" および "3") を[使用
● ラベルをシステム定義の値の後に結合する	
○ ラベルを値として使用	
✓ ランダム シードの設定	
シード: 1234567 🗘 生成	
□ 一意のフィールドを使用してデータ区分を割り当てる:	-
OK キャンセル	適用(<u>A</u>) リセット(<u>R</u>)

Figure3.1.2 データ区分ノード

データ区分ノードは、レコードをランダムに**学習**データ区分と**テスト**データ区分に分割する 場合に使用します。デフォルトでは、学習データ区分に**50%**、テストデータ区分に**50%**確保さ れます。また、ランダムシードの設定が有効にすることで、乱数の値が固定されるため、スト リームを実行するごとに異なるレコードが割り当てられることを防ぐことができます。

TIPS

特にレコード数が少ない場合、学習データにはテストデータより多めのサンプルを割り当てます。学習用に70%、テスト用に30%の割合は比較的よく利用されます。

- 4. **OK**ボタンをクリックして、データ区分ノードの編集画面を閉じます。
- 5. ストリームのデータ型ノードをダブルクリックして編集画面を表示します。

🌶 データ型					>
デーク型 つい	ビュー(P)				0 - 0
↓ ○ Ø	● 値の読み込み	値の	消去	すべての値	の消去
フィールドー	尺度	値	欠損値	検査	ロール
◇ 顧客番号	☞ 連続型	[47,84042		なし	⊘なし
◇ 年齢	☞ 連続型	[18,63]		なし	▲ 入力
A 性別	🖁 フラグ型	M/F		なし	入 力
▲ 婚姻状況	🕈 フラグ型	未婚/既婚	-	なし	<u>کر ک</u>
A 支払方法	♣ 名義型	カード,ポ		なし	◎ なし
◇ 支払金額	☞ 連続型	[214,30363]		なし	
◇ 契約A	🕈 フラグ型	1/0		なし	🔉 እ. ታ
契約B	🕈 フラグ型	1/0		なし	🔪 እ.
◇ 契約C	🕈 フラグ型	1/0		なし	🔪 ኢታ
◇ サービスA	🕈 フラグ型	1/0		なし	🔪 ኢታ
◇ サービスB	🖁 フラグ型 💋	1/0		なし	🔪 ኢታ
Ø サービスC	🖁 フラグ型	1/0		なし	🔪 ኢታ
◇ 家の所有	🖁 フラグ型	1/0		なし	🔪 ኢታ
◇ 車の所有	🖁 フラグ型	1/0		なし	🔪 ኢታ
🚫 顧客紹介	🖁 フラグ型	1/0		なし	🔪 ኢታ
A 申込方法	🧕 フラグ型	書面/Web		なし	🔪 ኢታ
A 新規契約	8 フラグ型	契約あり <mark>/</mark> …		なし	⊘ なし
🔺 データ区分 📃	▲ 名義型	"1_学習","		なし	📲 データ区分
● 現在のフィーノ	レザを表示 〇 未使用の	のフィールド副	設定を表示		
ОК	キャンセル			適用(<u>A</u>)	リセット(<u>R</u>)

Figure3.1.3 データ型ノード

データ型ノードで、フィールドの**尺度**と**ロール**を設定します。この例では、**支払金額**を予測 の目的フィールドとして**対象**に割り当てています。

顧客番号と支払方法、新規契約の3つはモデリングには使用しません。

また、**データ区分**のフィールドによって、学習データ区分でモデル作成、テストデータ区分 でモデルのテストが自動的に行えるようになっています。

POINT

予測に寄与しないフィールドや、使用することに意味のないフィールドなどはそのロール を**なし**に設定しておきます。

TIPS

入力フィールドや対象フィールドの指定は、各モデリングノードでも設定することが可能 ですが、データ型ノードのロールとして設定しておくと、モデリング手法を変える度にフ ィールドの指定を行う必要がなくなるため効率的です。

操作手順

§3.2.1 オートメーションによる自動数値モデル作成の実行

この例では、顧客の**支払金額**の予測を行う例として、オートメーションの**自動数値**ノード を利用したモデル作成の手順を確認します。

操作手順

1. モデル作成パレットのすべてサブパレットをクリックします。

Figure3.2.2 ストリームキャンバスに配置した自動数値ノード

ストリームキャンバスに挿入したノードは、自動的に対象フィールドの名称になります。こ の例では、**支払金額**になっています。

入力フィールドと対象フィールドの設定は、データ型ノードで完了しているため、このまま でもモデリングを実行することができますが、実行前に重要なパラメーターを確認しておきま す。

- 3. 自動数値ノードをダブルクリックして編集画面を開きます。
- 4. モデルタブを開きます。

Figure3.2.3 自動数値ノードのモデルタブ

モデルタブでは、実行したモデルの選択の基準を設定します。**データ区分データを使用**が有効になっており、上流のデータ区分ノードの結果を受けて、学習用データとテストデータに区分した処理が行われます。

モデルのランク付けは、複数のモデルの精度を評価する基準の選択です。デフォルトでは、 相関(実測値と予測値の相関)が選択されています。その他には、使用フィールド数、相対誤差 が選択可能です。使用モデル数は、上位いくつまでのモデルを採用するかの設定であり、デフ ォルトでは3個です。

この例では、デフォルトのまま進めます。

- 5. **エキスパート**タブを開きます。
- 6. モデルの選択ドロップダウンリストからModelerで実行(目的を個別に指定)を選択し ます。

🛞 支払金額	X
実行されるモデルの推定数:13 フィールド モデル エキスパート ≣	⑦ □ □ 股定 注釈
モデルの選択:	Modeler で実行 (目的を個別に指定) 🖌
使用? モデルタイプ	モデル バラメータ モデル数
🗹 🐹 線型回帰	デフォルト 1
☑ 🐹 一般化線型	デフォルト 1
□ 🌋 一般化線型エンジン	デフォルト 1
 KNN アルゴリズム 	デフォル
Linear-AS	デンォルト 1
LSVM	デフォルト 1
Random Trees	デフォルト 1
 □ 単一モデルの構築に費やされる最大時間の制 停止規則 	限 15 😴 分
OK ▶ 実行(<u>U</u>) + +	- ンセル 適用(<u>A</u>) リセット(<u>R</u>)

Figure3.2.4 自動数値ノードのエキスパートタブ

エキスパートタブでは、実行するモデリング手法の選択と各手法のパラメーター設定を行う ことができます。デフォルトでは、線型回帰、一般化線型、C&R Tree、CHAID、線型、ニュ ーラルネットが選択されており、それぞれ1つのモデルがデフォルトのパラメーター設定によ って作成されます。数パターンのパラメーターを設定することによって、同じモデリング手法 でも複数のモデル作成を行えるようになっています。

ここでは、線型回帰を例にパラメーター設定の変更手順を確認してみます。

- 7. 線型回帰のモデルパラメータのセルをクリックします。
- 8. 指定を選択します。

🛞 支払金額			×
です。 フィールド	されるモデルの推定数: 13 • モデル エキスパート	設定 注釈	❷ □ □
モデルの選択	l.	Modeler で実行 (目的を個別	に指定) 👻
使用?	モデルタイプ	モデル パラメータ モデル養	t
✓	線型回帰	デフォルト 👻 1	
~	😥 一般化線型	デフォルト 指定 1	
	🌿 一般化線型エンジン	デフォルト 1	
	KNN アルゴリズム	デフォルト 1	
	Linear-AS	デフォルト 1	
V	LSVM	デフォルト 1	
	Random Treès	デフォルト 1	
 □ 単一モデルの構築に費やされる最大時間の制限 15 ♀ 分 停止規則 			
ОК	▶ 実行(世) キ・	▶ンセル 適用(<u>A</u>)	リセット(<u>R</u>)

Figure3.2.5 線型回帰のモデルパラメータの指定

POINT

モデルタイプは、**モデルパラメータ**を個別に指定することができ、さまざまな設定による モデル作成を同時に試行することができます。

クラスタリングは、入力フィールドの類似したパターンを持つレコードをクラスター(セグメント)に分割するための分析手法です。入力フィールドのみに関心があるため、クラシフィケーションの手法と異なり対象フィールドの概念を持ちません。クラスタリングによって、例えば、既存の顧客のレコードを顧客セグメントに分類することができます。

Contents

Keyword

クラスタリング / クラスター分析 / K-Means / Two-Step / Kohonen / 異常値検査 / 自動クラスタリング / クラスターのプロフィール /

§5.1.1 クラスタリングの概要

クラスタリングは、入力フィールドの類似したパターンを持つレコードをクラスター(セグ メント)に分割するための分析手法です。入力フィールドのみに関心があるため、クラシフィ ケーションの手法と異なり対象フィールドの概念を持ちません。クラスタリングによって、 既存の顧客のレコードを潜在的な顧客セグメントに分類することができます。

P	自動 クラスタリング	複数のクラスタリングモデリングを同時に試行して、 精度の高い結果を採用する場合に使用します。
K	K-Means	K個のクラスター数を指定することで実行される代表 的なクラスタリングのモデリングノードです。
	Two-Step	Two-Stepでは、2段階のクラスター化手法が用いられ、 最適なクラスター数を自動的に決定されます。
	Kohonen	ニューラルネットワークの手法で、ネットワークの学 習によってレコードを類似セグメントに分類します。
	異常値検査	Two-Stepの方法によりセグメント化を行い、正常なパ ターンに合致しないレコードを特定します。
	Table5.1.1 ク	ラスタリング(セグメンテーション)のノード

IBM SPSS Modelerでは、クラスタリングのためのノードとして、自動クラスタリング、 K-Means、Two-Step、Kohonen、異常値検査の5つがあり、モデル作成パレットに含まれて います。

POINT

クラスタリングは、多数の入力ノードに基づいて類似グループ(クラスター/セグメント) を識別することができる分析手法です。

§5.3.2 K-Meansによるクラスタリングの結果の解釈

クラスタリングの実行が完了すると、ストリームにモデルナゲットが作成されます。この モデルに、クラスタリングの結果が含まれています。

操作手順

1. K-Meansのモデルナゲットをダブルクリックして編集します。

Figure 5.3.7 生成されたK-Meansモデル

K-Meansモデルビューアーが表示されます。左側のメインビュー領域にモデル要約が表示 されます。この例では、7個のフィールドに基づいて3個のクラスターに分類されています。ま た、クラスターの品質はクラスタリングの精度の評価の参考となります。 **クラスターの品質**は、レコードとクラスター中心の距離を計算しており、値が1に近いほど 所属するクラスターと最近隣クラスターとの差があることを意味し、精度が高いと評価します。 このスナップショットを使用して、クラスターの精度が悪いかどうかをすばやく確認できます。

TIPS

すべてのレコードに対するシルエット平均は、(B-A)/max(A,B)となります。Aはクラスタ ー中心へのレコードの距離、Bはレコードが属さない最近隣クラスター中心へのレコード の距離です。シルエット係数1は、すべてのケースはクラスター中心に直接配置されてい るということを意味します。値-1は、すべてのケースが他のクラスターのクラスター中心 にあることを意味します。平均の0の値は、ケースが自身のクラスター中心と、その他の 最近隣クラスターとの間で等距離にあることを意味します。

TIPS

2. 左側のメインビュー領域の下部にあるビューをクラスターに変更します。

クラスター	クラスター-3	クラスター-2	クラスター-1
ラベル			
説明			
サイズ	62.3%	19.4%	18.2%
	(5382)	(1678)	(1572)
入力	家の所有	2所本	家の所有
	0 (100.0%)	1 (101.0%)	0 (93.4%)
	a	契約A T (93.8%)	契約A 0 (100.0%)
	契約 時	契約B	契約B
	(100.0%)	1 (99.9%)	0 (50.2%)
	契約C	契約C	契約C
	1 (74.8%)	1 (89.7%)	0(79.4%)
	支払方法	支払方法	支払方法
	現金 (52.6%)	ポイント (48.7%)	現金 (50.5%)
	支払金額	支払金額	支払金額
	9,031.64	8,062.89	12,204.76
	車の所有	車の所有	車の所有
	0(87.6%)	0(83.1%)	0(79.7%)

クラスター

入力値 (予測値)の重要度 ■1.0■0.8■0.6■0.4■0.2■0.0

Figure5.3.8 クラスタービューのクラスター中心による表示

クラスタービューでは、各クラスターサイズとしてnと%、各入力フィールドの要約情報を 確認することができます。第1クラスターは1,572レコードで全体の18.2%、第2クラスターは 1,678レコードで全体の19.4%、第3クラスターは5,382レコードで全体の62.3%です。

TIPS

クラスターの表示順番の設定は、下部のツールバーに含まれる**クラスターをサイズでソート、クラスター名でソート、クラスターをラベルでソート**の3種類選択することができます。デフォルトではサイズでソートされています。

入力フィールドとして**家の所有**の特徴に注目すると、第3クラスターでは**家の所有=0**が **100%**であり、このクラスターで家の所有がない特徴を持ちます。一方、第2クラスターで は**家の所有=1**が**100%**であり、このクラスターは家の所有がある特徴を持ちます。家の所 有は、クラスターの構成に寄与しているようです。

また、**車の所有**の特徴に注目すると、3つのクラスターのいずれも**車の所有=0**が80%ほどであり、車の所有によるクラスターの違いはあまりなさそうです。このようなフィールドは、モデリングから除外しても良いかもしれません。

TIPS

入力フィールドの表示順番の設定は、下部のツールバーに含まれる入力値をクラスター内 の重要度でソート、入力値を名前でソート、入力値をデータでソートの3種類選択するこ とができます。デフォルトではクラスター内の重要度でソートされています。

3. 左側の領域の下部にあるツールバーからセルには絶対分布を表示をクリックします。

Figure 5.3.9 クラスタービューのツールバー

#%	セルには クラスター中心を表示	連続型フィールドでは平均値、カテゴリ型フィールド の最頻カテゴリの%が表示されます。	
	セルには 絶対分布を表示	フィールドの絶対分布を表示します。濃い赤はクラス ター分布、淡い赤は全体のデータを表示します。	
	セルには 相対分布を表示	フィールドの相対分布を表示します。濃い赤はクラス ター分布、淡い赤は全体のテータを表示します。	
	セルには 基本情報を表示	フィールド名のみを表示します。よりコンパクトな表示です。	
Table5.3.1 セルの内容ツールバーのボタン			

クラスター

入力値 (予測値)の重要度

Figure 5.3.10 クラスタービューの絶対分布による表示

絶対分布では、全体の分布とクラスターの分布を度数に基づいて表示します。視覚的に確認 することができるため、平均値やパーセンテージの表示とあわせて各クラスターの特徴を評価 します。

4. 左側の領域で、クラスターの名前をCTRLキーを使用してすべて選択します。

Figure5.3.12 カテゴリ型フィールドの比較の例

POINT

クラスターの比較では、カテゴリ型フィールドは最頻カテゴリが表示されます。

連続型フィールドの場合は箱ひげ図で表示され、全体の中央値と4分位範囲を示します。四 角形のポイントマーカーと水平線は、それぞれ各クラスターの中央値と4分位範囲を示します。

支払金額フィールドに注目すると、クラスター1は全体の中央値より大きく、クラスター2 とクラスター3では全体の中央値より低いことが分かります。

StatsGuild Inc.

これらの出力を参考にしながら、クラスターの解釈とプロフィール作成を行います。

操作手順

5. **OK**ボタンをクリックして、モデルビューアーを閉じます。

POINT

クラスタリングは、多数の入力フィールドに基づいて、レコードを類似するグループに分類するための手法であり、分類されたクラスターが説明のつく結果になっているかどうか を評価するのは分析者です。この作業はプロフィール作成と呼ばれます。

