分析支援サービス
IBM SPSSを利用したデータ分析、情報活用支援

プライバシーマーク

C&R Tree (Classification and Regression Tree)

公開日:  最終更新日:2020/06/17   Analytics method 
目的変数に対して多数の要因でデータセットをセグメントに分岐し、ツリー図を構築する分析手法です。変数の選択や分岐の基準に不純度を用いており、CHAIDと並びよく利用されるディシジョンツリーの手法ですが、分岐は常に2つになるのが特徴です。
目的変数には、カテゴリ変数(比率)とスケール変数(平均値)の両方が利用できます。カテゴリ変数の場合の不純度はGini係数を利用することができ、スケール変数の場合の不純度は分散になります。

常に2分岐になるためツリーは深くなりやすく、ツリーの成長停止規則を定義しないと、不純度が0になるまで分岐されオーバーフィットが起こるため、剪定(枝刈り)が必要です。目的変数をスケール変数で分割する際のカットオフ値の探索にも応用されます。


■ 関連する分析手法
CHAID

■ IBM SPSS製品
IBM SPSS Decision Trees

■ 支援サービス
SPSSデータマイニング基礎講座

PAGE TOP ↑