Modelerの使い方

IBM SPSS Modelerの基本的な使い方

ノードと呼ばれるアイコンを組合せてキャンバスに処理フローを描きます。
処理フローはストリームとして視覚的に管理でき、ノーコードで高度な分析機能にアクセスできます。

spss modelerのストリームイメージ
Modeler入門コース初級編AChapter1

CRISP-DMで分析計画

ビジネス課題と分析目標の理解

CRISP-DM (CRoss-Industry Standard Process for Data Mining) は、IBM SPSS Modelerが採用しているプロセスモデルです。6つのフェーズで構成され、CRISP-DMに基づいてデータ分析を行うことで、効率よくデータ分析を進めることができます。ビジネスや分析の課題は頭の中で考えるだけでなく、きちんと文書化することが大切です。

Modeler入門コース初級編AChapter2~

Modelerにデータを読み込もう

データベースやCSVなど多様なデータソースに対応

データインポートは、入力パレットを使用します。可変長ファイルExcelデータベースStatisticsファイルなどが代表的です。カンマ区切りのCSVの場合、区切り文字、ストレージ、データ型などの主要な項目の指定を行うだけです。インポートするデータは1列1変数、1行1レコードの形式になっている必要があります。

spss modeler icon image

可変長ファイル

spss modeler icon image

Excel

spss modeler icon image

データベース

spss modeler icon image

Statistics

spss modeler icon image

ユーザー入力

spss modeler icon image

データ型

Modeler入門コース初級編BChapter1~

データの加工と前処理

アイコンを組合せて複雑な処理も自由に

データの加工や前処理には、レコード設定フィールド設定を使います。ファイル結合やフィールド作成(年齢→年代、都道府県を地域別にまとめる、利用金額を10分位に分割、前回利用との差分を出す、etc)などを、用途に応じたノードの組合せで実現します。加工フローはアイコンをつなげた視覚的なイメージで管理できます。

spss modeler icon image

条件抽出

spss modeler icon image

レコード結合

spss modeler icon image

データ分類

spss modeler icon image

フラグ設定

spss modeler icon image

再構成

spss modeler icon image

フィールド作成

Modeler入門コース初級編AChapter4~

基礎分析へ

データ検査で全フィールドを一度の要約

高度な分析処理に進む前に、データの特徴を調べる基礎分析を行います。各フィールドの要約(平均値、標準偏差、最小値、最大値、%など)、グラフ作成、欠損レコードの比率や内訳、外れ値や極値の確認、グループ比較などは、出力とグラフの機能で対応します。データ検査で全フィールドの特徴を一気に調べて、スクリーニングすることもできます。

spss modeler icon image

クロス集計

spss modeler icon image

グラフボード

spss modeler icon image

Webグラフ

spss modeler icon image

記述統計

spss modeler icon image

変換

spss modeler icon image

データ検査

Modeler入門コース初級編BChapter1~

特徴量やレコードのスクリーニング

特徴量選択や異常値検査

特徴量選択ノードを使用することで、対象と相関/連関の高いものだけを選別して予測モデル作成に流し込むフィルタリングにも対応しています。また、異常値検査ではクラスタリングにより異常レコードを識別してストリームから除外させることができ、予測モデル作成のフィールド選択を補助します。

spss modeler icon image

特徴量選択
spss modeler icon image

異常値検査
Modeler入門コース初級編CChapter1~

予測モデル作成、類似パターン発見

専門知識がなくてもノーコードで高度な分析

予測モデル作成の50種類近い手法がGUIで提供されます。教師あり学習のニューラルネットワーク線型モデル決定木分析ベイジアンネットワークランダムフォレストなどのほか、教師なし学習として、K-MeansKohonenなどのクラスター分析、因子分析や主成分分析に対応します。共起規則を抽出するアソシエーションやシーケンスモデルも使用可能です。

spss modeler icon image

一般化線型

spss modeler icon image

C&R Tree

spss modeler icon image

XGBoost

spss modeler icon image

ベイズ

spss modeler icon image

K Means

spss modeler icon image

Apriori

spss modeler icon image

因子分析

Modeler入門コース初級編CChapter3

予測精度の高いモデルをランキング

オートメーションで多数モデル生成と比較

複数のモデルを同時実行するオートメーションの機能で、例えば、買う/買わないの2値の分類モデルにおいて、ニューラルネットワーク、決定木分析、ロジスティック回帰分析、SVMなどの手法を指定し、変数選択やブースティングなど複数パラメータを設定して、モデルを複数パターン作成させて、精度の良いモデルのランキングが可能です。

spss modeler icon image

自動分類

spss modeler icon image

自動数値

spss modeler icon image

自動クラスタリング

spss modeler icon image

時系列

Modeler入門コース初級編CChapter6

予測値のスコアリング

外部エクスポートやシステムとの連携

加工や前処理を終えたデータセットや予測値や確率などを、外部ファイルにエクスポートします。データベースのテーブルに書き込んだり、Excel形式で保存することで、別のアプリケーションやツールでの活用を実現します。エクスポートの方法は他のノードと同じく、ストリームの最後にリンクして出力先の指定を行うだけです。

spss modeler icon image

データベース

spss modeler icon image

フラットファイル

spss modeler icon image

Excel

spss modeler icon image

Statistics

spss modeler icon image

JSONエクスポート

無料紹介動画でイメージを掴もう

始めてみよう! SPSS Modeler

無料紹介動画を見る

PAGE TOP ↑